Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells.

نویسندگان

  • Norman Tanner
  • Lisa Kubik
  • Claudia Luckert
  • Maria Thomas
  • Ute Hofmann
  • Ulrich M Zanger
  • Linda Böhmert
  • Alfonso Lampen
  • Albert Braeuning
چکیده

Nonalcoholic fatty liver disease (NAFLD), which is characterized by triglyceride deposition in hepatocytes resulting from imbalanced lipid homeostasis, is of increasing concern in Western countries, along with progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Previous studies suggest a complex, mutual influence of hepatic fat accumulation, NASH-related inflammatory mediators, and drug-sensing receptors regulating xenobiotic metabolism. Here, we investigated the suitability of human HepaRG hepatocarcinoma cells as a model for NAFLD and NASH. Cells were incubated for up to 14 days with an oleate/palmitate mixture (125 µM each) and/or with 10 ng/ml of the inflammatory mediator interleukin-6 (IL-6). Effects of these conditions on the regulation of drug metabolism were studied using xenobiotic agonists of the aryl hydrocarbon receptor (AHR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), nuclear factor (erythroid-derived 2)-like 2, and peroxisome proliferator-activated receptor α (PPARα). Results underpin the suitability of HepaRG cells for NAFLD- and NASH-related research and constitute a broad-based analysis of the impact of hepatic fatty acid accumulation and inflammation on drug metabolism and its inducibility by xenobiotics. IL-6 exerted pronounced negative regulatory effects on basal as well as on PXR-, CAR-, and PPARα-, but not AHR-dependent induction of drug-metabolizing enzymes. This inhibition was related to diminished transactivation potential of the respective receptors rather than to reduced transcription of nuclear receptor-encoding mRNAs. The most striking effects of IL-6 and/or fatty acid treatment were observed in HepaRG cells after 14 days of treatment, making these cultures appear a suitable model for studying the relationship of fatty acid accumulation, inflammation, and xenobiotic-induced drug metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Dmd060962 273..283

Inflammatory processes are associated with compromised metabolism and elimination of drugs in the liver, largely mediated by proinflammatory cytokines, such as interleukin-6. The Hepa-RG cell line is an established surrogate for primary human hepatocytes (PHH) in drug metabolism and toxicity studies. However, the impact of inflammatory signaling on HepaRG cells has not been well characterized. ...

متن کامل

فاکتور نکروزدهنده تومور آلفا و راهکارهای مهار آن: مقاله مروری

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine produced by a variety of cells, including hematopoietic and non-hematopoietic cells, malignant cells, macrophages, B lymphocytes, T lymphocytes, natural killer cells, neutrophils, astrocytes, endothelial cells, and smooth muscle cells. TNF-α is a homo-trimeric molecular whose individual subunits are composed of antiparallel beta...

متن کامل

Prediction of MicroRNAs bind to Toll-like Receptors Pathway in Chicken based on Bioinformatics Method

Background: Toll-like receptors (TLRs) detect diverse pathogen-associated molecular patterns and play a critical role in the innate immune response. Hosts should activate TLR-signaling pathways to eliminate invading pathogens. However, excessive activation of these pathways may interrupt immune homeostasis, leading to several diseases. Therefore precise regulation of TLR-signaling pathways is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2018